查看原题
设 $f(x)$ 对任意实数 $x, y$, 有 $f(x+y)=f(x)+f(y)$, 且 $f(x)$ 在 $x=0$ 处连续, 证明: $f(x)$在 $\mathbf{R}$ 上连续。
                        
不再提醒