清空
下载
撤销
重做
查看原题
设 $f(x)$ 对任意实数 $x, y$, 有 $f(x+y)=f(x)+f(y)$, 且 $f(x)$ 在 $x=0$ 处连续, 证明: $f(x)$在 $\mathbf{R}$ 上连续。
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒