清空
下载
撤销
重做
查看原题
设 $a, b, c, d \in(0,1)$, 满足 $a^2+b^2+c^2+d^2=3$. 证明:
$$
\frac{1-a^2}{b+c}+\frac{1-b^2}{c+d}+\frac{1-c^2}{d+a}+\frac{1-d^2}{a+b} < \frac{2}{3} \text {. (李胜宏供题) }
$$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒