查看原题
已知整数 $m>1$ 使区间 $[2 m-\sqrt{m}+1,2 m]$ 中有质数. 求证: 对任意互不相同的正整数 $a_1, a_2, \cdots, a_m$, 都存在 $1 \leq i, j \leq m$, 满足 $\frac{a_i}{\left(a_i, a_j\right)} \geq m$.
                        
不再提醒