清空
下载
撤销
重做
查看原题
设 $f(x)$ 是 $n$ 次整系数多项式, 且存在 $n+1$ 个不同的整数 $a_1, \cdots, a_{n+1}$,使得 $\left|f\left(a_i\right)\right|=1(1 \leq i \leq n+1)$. 证明: $f(x)$ 在有理数域上不可约.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒