查看原题
设 $n$ 阶方阵 $\boldsymbol{H}=\left(a_{i j}\right)$, 其中 $a_{i j}=\frac{1}{i+j-1}$, 称这样的矩阵为 $n$ 阶 Hilbert 矩阵. 求证: $\boldsymbol{H}^{-1}$ 是整数矩阵, 即 $\boldsymbol{H}^{-1}$ 的每个元素都是整数.
                        
不再提醒