查看原题
如图, 在直三棱柱 $A B C-A_{1} B_{1} C_{1}$ 中, $A C \perp B C, A C=B C=2, C C_{1}=3$, 点 $D, E$ 分别在棱 $A A_{1}$ 和棱 $C C_{1}$ 上, 且 $A D=1, C E=2$.

(1) 设 $F$ 为 $B_{1} C_{1}$ 中点, 求证: $A_{1} F / /$ 平面 $B D E$;
(2) 求直线 $A_{1} B_{1}$ 与平面 $B D E$ 所成角的正弦值.
                        
不再提醒