清空
下载
撤销
重做
查看原题
已知函数 $f(x)=x-\frac{1}{a} \ln x$ 与函数 $g(x)=\mathrm{e}^{a x}-x$, 其中 $a>0$
(1) 求 $f(x)$ 的单调区间;
(2)若 $g(x)>0$, 求 $a$ 的取值范围;
(3) 若曲线 $y=f(x)$ 与 $x$ 轴有两个不同的交点, 求证: 曲线 $y=f(x)$ 与曲线 $y=g(x)$ 共有三个不同的交点.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒