清空
下载
撤销
重做
查看原题
设 $f(x)$ 是连续函数,
(1) 利用定义证明函数 $F(x)=\int_0^x f(t) \mathrm{d} t$ 可导,$F^{\prime}(x)=f(x) ;$
(2) 当 $f(x)$ 是以 2 为周期的周期函数时,证明函数
$$
G(x)=2 \int_0^x f(t) \mathrm{d} t-x \int_0^2 f(t) \mathrm{d} t
$$
也是以 2 为周期的周期函数.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒