查看原题
已知平面上动点 $Q(x, y)$ 到 $F(0,1)$ 的距离比 $Q(x, y)$ 到直线 $l: y=-2$ 的距离小 1 , 记动点 $Q(x$,
y) 的轨迹为曲线 $C$.
(1) 求曲线 $C$ 的方程.
(2)设点 $P$ 的坐标为 $(0,-1)$, 过点 $P$ 作曲线 $C$ 的切线, 切点为 $A$, 若过点 $P$ 的直线 $m$ 与曲线 $C$ 交于 $M$, $N$ 两点, 证明: $\angle A F M=\angle A F N$.
                        
不再提醒