查看原题
计算曲线积分
$$
I=\oint_L\left(y^2-z^2\right) \mathrm{d} x+\left(2 z^2-x^2\right) \mathrm{d} y+\left(3 x^2-y^2\right) \mathrm{d} z
$$

其中 $L$ 是平面 $x+y+z=2$ 与柱面 $|x|+|y|=1$ 的交线,从 $Z$ 轴正向看去, $L$ 为逆时针方向.
                        
不再提醒