清空
下载
撤销
重做
查看原题
设 $A$ 是 $n$ 阶矩阵,若存在正整数 $k$ ,使线性方程组 $A^k x=0$ 有解向量 $\boldsymbol{\alpha}$ ,且 $\boldsymbol{A}^{k-1} \boldsymbol{\alpha} \neq 0$.
证明: 向量组 $\boldsymbol{\alpha}, \boldsymbol{A} \alpha, \cdots, \boldsymbol{A}^{k-1} \boldsymbol{\alpha}$ 是线性无关的.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒