清空
下载
撤销
重做
查看原题
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内连续,且
$$
F(x)=\int_0^x(x-2 t) f(t) \mathrm{d} t \text { , }
$$
试证:(1) 若 $f(x)$ 为偶函数,则 $F(x)$ 也是偶函数;
(2) 若 $f(x)$ 单调不增,则 $F(x)$ 单调不减.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒