查看原题
设 $f(x)$ 连续, $F(x)=\int_0^{x^2} f\left(t^2\right) \mathrm{d} t$ ,则 $F^{\prime}(x)$ 等于
A. $f\left(x^4\right)$     B. $x^2 f\left(x^4\right)$     C. $2 x f\left(x^4\right)$     D. $2 x f\left(x^2\right)$         
不再提醒