查看原题
设 $n$ 阶矩阵 $A$ 的伴随矩阵为 $A^*$, 证明 $R\left(A^*\right)=\left\{\begin{array}{l}n, R(A)=n \\ 1, R(A)=n-1 \\ 0, R(A) < n-1\end{array}\right.$.
                        
不再提醒