科数网
题号:14115    题型:解答题    来源:线性代数同步练习(四)行列式计算
设 $n$ 阶矩阵 $A$ 的伴随矩阵为 $A^*$, 证明 $R\left(A^*\right)=\left\{\begin{array}{l}n, R(A)=n \\ 1, R(A)=n-1 \\ 0, R(A) < n-1\end{array}\right.$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP