清空
下载
撤销
重做
查看原题
设 $a_1=\sqrt{1+2015}, a_2=\sqrt{1+2015 \sqrt{1+2016}}, \cdots$,
$$
a_n=\sqrt{(1+2015 \sqrt{(1+2016 \sqrt{(1+\cdots+(2014+n) \sqrt{1+(2013+n)})})}}
$$
求证:数列 $\left\{a_n\right\}$ 收敛, 并求 $\lim _{n \rightarrow \infty} a_n$ 的值
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒