清空
下载
撤销
重做
查看原题
已知函数 $f(x)=e^x, g(x)=-\ln x$, 则下列命题正确的有
A. 若 $g(x) \geq a x$ 恒成立, 则 $a \leq-\frac{1}{e}$
B. 若 $y=f(x)$ 与 $y=a x-1$ 相切, 则 $a=2 e$
C. 存在实数 $a$ 使得 $y=f(x)-a x$ 和 $y=g(x)+a x$ 有相同的最小值
D. 存在实数 $a$ 使得方程 $f(x)-x=a$ 与 $x+g(x)=a$ 有相同的根且所有的根构成等差数列
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒