清空
下载
撤销
重做
查看原题
已知函数 $f(x)=(a x+1) \mathrm{e}^x, f^{\prime}(x)$ 是 $f(x)$ 的导函数, 且 $f^{\prime}(x)-f(x)=2 \mathrm{e}^x$.
(1) 若曲线 $y=f(x)$ 在 $x=0$ 处的切线为 $y=k x+b$, 求 $k, b$ 的值;
(2) 在 (1) 的条件下, 证明: $f(x) \geqslant k x+b$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒