清空
下载
撤销
重做
查看原题
设 $A$ 是 $n$ 阶矩阵, $n>1$ ,如果对任意 $n$ 阶矩阵 $B$ ,都有
$|A+B|=|A|+|B| .$
证明: $A=O$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒