清空
下载
撤销
重做
查看原题
已知 $X \sim N\left(\mu, \sigma^2\right), Y=\mathrm{e}^X$.
(1) 求随机变量 $Y$ 的分布函数;
(2) 设 $Y_1, Y_2, \cdots, Y_n$ 是总体 $Y$ 的简单随机样本, 若 $\sigma^2$ 已知, 求参数 $\mu$ 的矩估计量;
(3) 若 $\sigma^2$ 未知, 求参数 $\mu$ 与 $\sigma^2$ 的最大似然估计量.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒