清空
下载
撤销
重做
查看原题
设函数 $f_n(x)=\frac{1}{n+1} x-\arctan x$, 其中 $n$ 为正整数. 证明:
(I) 方程 $f_n(x)=0$ 存在唯一正实根 $x_n$;
(II) 当 $p>2$ 时,级数 $\sum_{n=1}^{\infty} \frac{1}{x_n^p}$ 收敛.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒