清空
下载
撤销
重做
查看原题
已知 $X_1, X_2, \cdots, X_n$ 是来自正态总体 $N\left(0, \sigma^2\right)$ 容量为 $n(n>1)$ 的简单随机样本, 样本均值与方差分别为 $\bar{X}, S^2$. 记 $\hat{\sigma}^2=(n-1) \bar{X}^2+\frac{1}{n} S^2$, 试求统计量 $\hat{\sigma}^2$ 的期望 $E \hat{\sigma}^2$ 与方差 $D \hat{\sigma}^2$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒