清空
下载
撤销
重做
查看原题
计算曲线积分: $I=\oint_L y^2 \mathrm{~d} x+z^2 \mathrm{~d} y+x^2 \mathrm{~d} z$ ,其中 $L$ 为球面 $x^2+y^2+z^2=a^2$ 与柱面 $x^2+y^2=a x$ 的交线,从 $z$ 轴正向看过去为逆时针方向,其中 $z \geq 0, a>0$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒