查看原题
设 $f(x)$ 在 $[0,+\infty)$ 连续,广义积分 $\int_0^{+\infty} f(x) \mathrm{d} x$ 收敛. 证明:
$$
\lim _{\lambda \rightarrow 0^{+}} \int_0^{+\infty} e^{-\lambda x} f(x) \mathrm{d} x=\int_0^{+\infty} f(x) \mathrm{d} x .
$$
                        
不再提醒