查看原题
设 $x_n=\sum_{k=0}^n \frac{1}{k !}, n=1,2, \cdots$, 求极限 $\lim _{n \rightarrow \infty}\left(\frac{\ln x_n}{\sqrt[n]{\mathrm{e}}-1}-n\right) .$
                        
不再提醒