清空
下载
撤销
重做
查看原题
$x$ 为大于 0 的常数,构造数列 $\left\{x_n\right\}: x_1=\sqrt{x}, x_{n+1}=\sqrt{x+x_n}(n=1,2, \cdots)$.
(I) 证明: 数列 $\left\{x_n\right\}$ 收敛;
(II) 给定正整数 $m \geqslant 2$, 求方程 $\lim x_n=m$ 的解.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒