清空
下载
撤销
重做
查看原题
设 $f(x)$ 是区间 $[0,1]$ 上的可导函数, 且满足: $0 < f(x) < 1$, 试证:
(1) 至少存在一点 $\xi \in(0,1)$, 使得 $f(\xi)=\xi^{2019}$;
(2)至少存在一点 $\eta \in(0,1)$, 使得 $3 f(\eta)+\eta f^{\prime}(\eta)=2022 \eta^{2019}$ 。
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒