清空
下载
撤销
重做
查看原题
已知函数 $f(x)$ 是定义在 $R$ 上的奇函数, 且对任意的 $x>0, f(x+2)+2 f(x)=0$ 恒成立, 当 $x \in[0,2]$ 时 $f(x)=\sin \frac{\pi x}{2}$. 若对任意 $x \in[-m, m](m>0)$, 都有 $|f(x-1)| \leq 2$, 则 $m$ 的最大值是
A. $\frac{7}{3}$
B. $\frac{10}{3}$
C. 4
D. $\frac{13}{3}$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒