查看原题
已知函数 $f(x)$ 是定义在 $R$ 上的奇函数, 且对任意的 $x>0, f(x+2)+2 f(x)=0$ 恒成立, 当 $x \in[0,2]$ 时 $f(x)=\sin \frac{\pi x}{2}$. 若对任意 $x \in[-m, m](m>0)$, 都有 $|f(x-1)| \leq 2$, 则 $m$ 的最大值是
A. $\frac{7}{3}$     B. $\frac{10}{3}$     C. 4     D. $\frac{13}{3}$         
不再提醒