查看原题
设随机变量 $X$ 的密度函数为 $f(x)=\frac{2}{\pi} \sqrt{1-x^2}, x \in(-1,1)$. 对任意 $x \in(-1,1)$,若在条件 $X=x$ 下, 随机变量 $Y$ 的条件分布律为
$$
\mathrm{P}\left(Y=-\sqrt{1-x^2}\right)=\mathrm{P}\left(Y=\sqrt{1-x^2}\right)=1 / 2,
$$
则 $Y$ ________ 连续型随机变量, $(X, Y)$ ________ 连续型随机向量.
A. 是, 是     B. 是, 不是     C. 不是, 是     D. 不是, 不是         
不再提醒