科数网
题号:10164    题型:单选题    来源:中国科学技术大学2019-2020学年第一学期《概率论与数理统计》期末试卷
设随机变量 $X$ 的密度函数为 $f(x)=\frac{2}{\pi} \sqrt{1-x^2}, x \in(-1,1)$. 对任意 $x \in(-1,1)$,若在条件 $X=x$ 下, 随机变量 $Y$ 的条件分布律为
$$
\mathrm{P}\left(Y=-\sqrt{1-x^2}\right)=\mathrm{P}\left(Y=\sqrt{1-x^2}\right)=1 / 2,
$$
则 $Y$ ________ 连续型随机变量, $(X, Y)$ ________ 连续型随机向量.
$\text{A.}$ 是, 是 $\text{B.}$ 是, 不是 $\text{C.}$ 不是, 是 $\text{D.}$ 不是, 不是
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP