清空
下载
撤销
重做
查看原题
设 $f(x)$ 是 $[0,+\infty)$ 上的可导函数,且导函数 $f^{\prime}$ 处处连续,假设 $\int_0^{+\infty} f^2(x) d x$ 与 $\int_0^{+\infty}\left[f^{\prime}(x)\right]^2 d x$ 均收敛,
证明 $\lim _{x \rightarrow+\infty} f(x)=0$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒