清空
下载
撤销
重做
查看原题
设 $f(x)$ 是 $[-1,1]$ 上的连续的偶函数, 计算曲线积分:
$I=\oint_L \frac{x^2+y^2}{2 \sqrt{1-x^2}} \mathrm{~d} x+f(x) \mathrm{d} y$, 其中曲线 $L$ 为正向圆周 $x^2+y^2=-2 y$.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒