设总体 $X$ 的概率密度为 $f(x)=\left\{\begin{array}{ll}2(x-\theta) \mathrm{e}^{-(x-\theta)^2}, & x>\theta, \\ 0, & x \leqslant \theta,\end{array}\left(X_1, X_2, \cdots, X_n\right)\right.$ 为来自总体 $X$ 的简单随机样本.
(1) 求参数 $\theta$ 的矩估计量;
(2) 设 $U=\min \left\{X_1, X_2, \cdots, X_n\right\}$, 求 $E(U)$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$