科数网
题号:9196    题型:解答题    来源:2024全国硕士研究生招生考试考研数学(三)模拟试题及详细参考解答
设 $\boldsymbol{A}$ 为三阶方阵, 并有可逆矩阵 $\boldsymbol{P}=\left(\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3\right), \boldsymbol{p}_i(i=1,2,3)$ 为三维列向量, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(1) 证明: $p_1, p_2$ 为 $(E-A) x=0$ 的解, $p_3$ 为 $(E-A) x=-p_2$ 的解, 且 $A$ 不可相似对角化;
(2) 当 $\boldsymbol{A}=\left[\begin{array}{ccc}2 & -1 & -1 \\ 2 & -1 & -2 \\ -1 & 1 & 2\end{array}\right]$ 时, 求可逆矩阵 $\boldsymbol{P}$, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP