科数网
试题 ID 909
【所属试卷】
1996年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设 $f(x)$ 有连续导数, $f(0)=0, f^{\prime}(0) \neq 0, F(x)=\int_{0}^{x}\left(x^{2}-t^{2}\right) f(t) \mathrm{d} t$, 且当 $x \rightarrow 0$ 时, $F^{\prime}(x)$ 与 $x^{k}$ 是同阶无穷小, 则 $k$ 等于
A
1
B
2
C
3
D
4
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 有连续导数, $f(0)=0, f^{\prime}(0) \neq 0, F(x)=\int_{0}^{x}\left(x^{2}-t^{2}\right) f(t) \mathrm{d} t$, 且当 $x \rightarrow 0$ 时, $F^{\prime}(x)$ 与 $x^{k}$ 是同阶无穷小, 则 $k$ 等于
1 2 3 4
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见