科数网
试题 ID 8885
【所属试卷】
李艳芳考研数学预测试卷(数一)2023版
设二维随机变量 $(X, Y)$ 的联合概率密度为
$$
f(x, y)= \begin{cases}\frac{C}{\left(2-x^2-y^2\right)^{\frac{3}{2}}}, & \frac{x}{\sqrt{3}} < y < x, 0 < x < 1, \\ 0, & \text { 其他, }\end{cases}
$$
其中 $C$ 为常数.
(I) 求常数 $C$;
(II) 求随机变量 $Z=\frac{Y}{X}$ 的分布函数.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设二维随机变量 $(X, Y)$ 的联合概率密度为
$$
f(x, y)= \begin{cases}\frac{C}{\left(2-x^2-y^2\right)^{\frac{3}{2}}}, & \frac{x}{\sqrt{3}} < y < x, 0 < x < 1, \\ 0, & \text { 其他, }\end{cases}
$$
其中 $C$ 为常数.
(I) 求常数 $C$;
(II) 求随机变量 $Z=\frac{Y}{X}$ 的分布函数.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见