科数网
题号:8841    题型:填空题    来源:高等数学《微积分》-定积分专项训练
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内连续,且
$$
F(x)=\int_0^x(x-2 t) f(t) \mathrm{d} t ,
$$
试证: (1) 若 $f(x)$ 为偶函数,则 $F(x)$ 也是偶函数;
(2) 若 $f(x)$ 单调不增,则 $F(x)$ 单调不减.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP