科数网
题号:8502    题型:解答题    来源:大连市高等数学竞赛(数学专业)试卷及参考解答
设函数 $f(x)$ 在 $[a, b]$ 上有连续的导函数且 $f(a)=0$ ,证明:
$$
\int_a^b\left|f(x) f^{\prime}(x)\right| \mathrm{d} x \leq \frac{b-a}{2} \int_a^b\left[f^{\prime}(x)\right]^2 \mathrm{~d} x .
$$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP