科数网
题号:8264    题型:解答题    来源:2024考研数学第一轮模拟考试(预测卷)
设 $\Sigma$ 为曲面 $4 x^2+y^2+z^2=1(z \geqslant 0)$ 的下侧, 计算曲面积分
$$
I=\iint_{\Sigma}(x+2 y) \mathrm{d} y \mathrm{~d} z+\frac{z}{\sqrt{x^2+y^2+z^2}} \mathrm{~d} z \mathrm{~d} x+\left(x^2-\frac{y}{\sqrt{x^2+y^2+z^2}}\right) \mathrm{d} x \mathrm{~d} y .
$$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP