科数网
试题 ID 8147
【所属试卷】
北方交通大学第二学期《线性代数B》期末考试试卷
设 $\mathbf{A}$ 是 $n$ 阶对称矩阵, $\mathbf{B}$ 是 $n$ 阶反对称矩阵, 则下列矩阵中, 可用正交变换化为对角矩阵的矩阵 为
A
BAB ;
B
ABA ;
C
$(\mathbf{A B})^2$;
D
$\mathbf{A B}^2$.
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $\mathbf{A}$ 是 $n$ 阶对称矩阵, $\mathbf{B}$ 是 $n$ 阶反对称矩阵, 则下列矩阵中, 可用正交变换化为对角矩阵的矩阵 为
BAB ; ABA ; $(\mathbf{A B})^2$; $\mathbf{A B}^2$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见