• 试题 ID 7849


设 $\boldsymbol{A}$ 为 3 阶矩阵, 将 $\boldsymbol{A}$ 的第 1,2 两行对调, 再将第 2 列的 2 倍加到第 3 列得 $\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right)$, 则 $\boldsymbol{A}^{\cdot}= $.
A $\left(\begin{array}{ccc}3 & 2 & 1 \\ -1 & 0 & 3 \\ -1 & 0 & 1\end{array}\right)$
B $\left(\begin{array}{ccc}-3 & -2 & -1 \\ 1 & 0 & -3 \\ 1 & 0 & -1\end{array}\right)$
C $\left(\begin{array}{ccc}-3 & -2 & -1 \\ -1 & 0 & 3 \\ 1 & 0 & -1\end{array}\right)$
D $\left(\begin{array}{ccc}-3 & -2 & 1 \\ 1 & 0 & 3 \\ -1 & 0 & 1\end{array}\right)$
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见