设 $\mathrm{D}$ 为 $\triangle \mathrm{ABC}$ 所在平面内一点, $\overrightarrow{\mathrm{BC}}=3 \overrightarrow{\mathrm{CD}}$, 则 ( )
$\text{A.}$ $\overrightarrow{\mathrm{AD}}=-\frac{1}{3} \overrightarrow{\mathrm{AB}}+\frac{4}{3} \overrightarrow{\mathrm{AC}}$
$\text{B.}$ $\overrightarrow{\mathrm{AD}}=\frac{1}{3} \overrightarrow{\mathrm{AB}}-\frac{4}{3} \overrightarrow{\mathrm{AC}}$
$\text{C.}$ $\overrightarrow{\mathrm{AD}}=\frac{4}{3} \overrightarrow{\mathrm{AB}}+\frac{1}{3} \overrightarrow{\mathrm{AC}}$
$\text{D.}$ $\overrightarrow{\mathrm{AD}}=\frac{4}{3} \overrightarrow{\mathrm{AB}}-\frac{1}{3} \overrightarrow{\mathrm{AC}}$