设 $S(x)$ 为幂级数
$$
x+\frac{x^3}{1 \cdot 3}+\frac{x^5}{1 \cdot 3 \cdot 5}+\ldots+\frac{x^{2 n+1}}{(2 n+1) ! !}+\cdots
$$
的和函数.
(1)求 $S(x)$ 的定义域;
(2) 证明 $S(x)$ 满足微分方程初值问题
$$
S^{\prime}(x)-x S(x)=1, \quad S(0)=0 ;
$$
(3) 写出 $S(x)$ 的积分表达式.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$