科数网
试题 ID 723
【所属试卷】
1994年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设 $\boldsymbol{A}$ 为 $n$ 阶非零方阵, $\boldsymbol{A}^{*}$ 是 $\boldsymbol{A}$ 的伴随矩阵, $\boldsymbol{A}^{\mathrm{T}}$ 是 $\boldsymbol{A}$ 的转置矩阵, 当 $\boldsymbol{A}^{*}=\boldsymbol{A}^{\mathrm{T}}$ 时, 证明 $|\boldsymbol{A}| \neq 0$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $\boldsymbol{A}$ 为 $n$ 阶非零方阵, $\boldsymbol{A}^{*}$ 是 $\boldsymbol{A}$ 的伴随矩阵, $\boldsymbol{A}^{\mathrm{T}}$ 是 $\boldsymbol{A}$ 的转置矩阵, 当 $\boldsymbol{A}^{*}=\boldsymbol{A}^{\mathrm{T}}$ 时, 证明 $|\boldsymbol{A}| \neq 0$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见