设 $A$ 为三阶方阵, 将 $A$ 的第 2 列加到第 1 列得到矩阵 $B$, 再交换矩阵 $B$ 的第 2 行与第 3 行得到矩阵 $C$, 记
$$
P_1=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], P_2=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \text { 则 } \boldsymbol{C}=(\quad) \text {. }
$$
$\text{A.}$ $P_2 A P_1$
$\text{B.}$ $P_1 A P_2$
$\text{C.}$ $A P_1 P_2$
$\text{D.}$ $P_2 P_1 A$