科数网
题号:6931    题型:单选题    来源:杨超2024研究生入学考试模拟试卷预测卷(数学一二三)
设总体 $X$ 的密度函数为
$$
f(x)= \begin{cases}\sqrt{\theta} x^{\sqrt{\theta}-1}, & 0 \leqslant x \leqslant 1, \\ 0, & \text { 其他, }\end{cases}
$$
$x_1, x_2, \cdots, x_n$ 为总体 $X$ 的一组样本观测值, 则末知参数 $\theta$ 的极大似然估计值 $\hat{\theta}$ 为
$\text{A.}$ $\frac{n}{\left(\sum_{i=1}^n \ln x_i\right)^2}$ $\text{B.}$ $\frac{n^2}{\left(\sum_{i=1}^n \ln x_i\right)^2}$ $\text{C.}$ $\frac{n^2}{\sum_{i=1}^n \ln x_i}$ $\text{D.}$ $\frac{n}{\sum_{i=1}^n \ln x_i}$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP