科数网
试题 ID 6603
【所属试卷】
考研数学《微积分》专项训练来源微信公众号-高度数学
设 $\lim _{x \rightarrow 0} \frac{\ln \left[1+\frac{f(x)}{\sin x}\right]}{a^x-1}=\frac{1}{2}(a>0, a \neq 1)$, 求 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $\lim _{x \rightarrow 0} \frac{\ln \left[1+\frac{f(x)}{\sin x}\right]}{a^x-1}=\frac{1}{2}(a>0, a \neq 1)$, 求 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见