已知函数 $f(x)=\sin (\omega x+\varphi)\left(\omega>0,|\varphi| < \frac{\pi}{2}\right)$ 图象上相邻两条对称轴之间的距离为 $\frac{\pi}{2}$, 将函数 $y=f(x)$ 的图象向左平移 $\frac{\pi}{3}$ 个单位后, 得到的图象关于 $y$ 轴对称, 则函数 $f(x)$ 的一 个零点是
$\text{A.}$ $\frac{\pi}{6}$
$\text{B.}$ $\frac{\pi}{12}$
$\text{C.}$ $\frac{\pi}{3}$
$\text{D.}$ $\frac{5 \pi}{12}$