设 $f(x)=\left\{\begin{array}{ll}x+1, & 0 \leqslant x \leqslant \pi, \\ 0, & -\pi \leqslant x < 0,\end{array} S(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right)\right.$ 是 $f(x)$ 以 $2 \pi$ 为周 期的傅里叶级数, 则 $\sum_{n=1}^{\infty} a_n=$
$\text{A.}$ $-\frac{\pi}{4}$.
$\text{B.}$ $\frac{\pi}{4}$.
$\text{C.}$ $-\frac{\pi}{2}$.
$\text{D.}$ $\frac{\pi}{2}$.