设函数 $f(x)$ 在闭区间 $[0,2]$ 上二阶可导, 且 $f^{\prime \prime}(x)>0$, 又 $f(0)=2 f(1)=f(2)=2$, 则
$\text{A.}$ $1 < \int_0^2 f(x) \mathrm{d} x < 2$.
$\text{B.}$ $\frac{3}{2} < \int_0^2 f(x) \mathrm{d} x < \frac{5}{2}$.
$\text{C.}$ $2 < \int_0^2 f(x) \mathrm{d} x < 3$.
$\text{D.}$ $3 < \int_0^2 f(x) \mathrm{d} x < 4$.